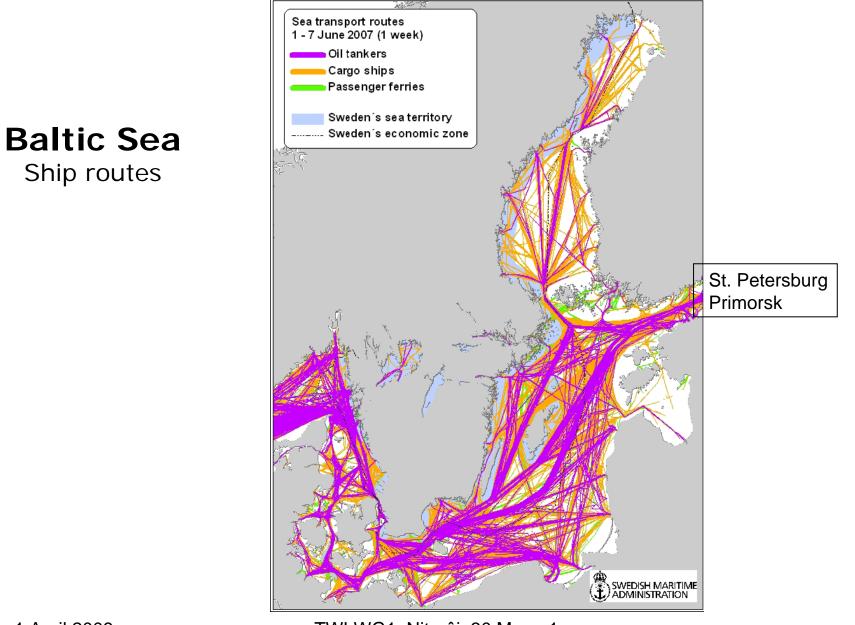
TWLWG1/4/14-1


1st TWLWG Meeting Niterôi, Rio de Janeiro, 30thMar-1stApr,2009

Report of the Chart Datum Working Group of the Baltic Sea Hydrographic Commission

By the Chart Datum WG Chair Jukka Varonen

1 April 2009

The Baltic Sea

- No tide (< 10 cm)
- The water level varies normally ± 50 cm
- Extreme values 1 to + 2 meters
- Water level changes are not periodical
- However it is possible to predict next 2-3 days
- Long and shallow fairways!!, hard rocky bottom
- Minimum underkeel clearances, dredgins
- Maximum drafts < 16 meters
- Postglacial land uplift (Finland, Sweden)

Introduction

The Baltic Sea Hydrographic Commission (BSHC) has established a Chart Datum Working Group. The primary tasks for the group are the following:

- to study the feasibility to use the European geodetic height reference system as a principal alternative for a harmonised vertical reference system for Baltic Sea nautical charts,

- to specify the existing differences of chart datums used in the Baltic Sea area, especially

- possible inconsistency in the nations area
- differences across the borders of the neighbouring countries

 differences compared to the common geodetic height datum

TOR:s (continued)

- to study

- the status of water level information
- distribution of water level information
- interpolation and prediction of water levels

- to prepare recommendations how the sea level and its variations should be shown on nautical paper and ENC charts and publications, and conveying water level information to mariners [ref. IHO T.R. A2.5.2. note ii].

 to clarify the role of other international bodies on this subject and find out points of contacts to them

 keep close contact to HSSC Tidal and Water Level Working Group

MSL, Mean Sea Level

- mean location of the sea level
- related to?
 - center of the earth
 - earth crust, where, below? / closest shore
- total duration of the observation series
- period of observations
- maximum expexted/allowed error

MSL calculation is effected by

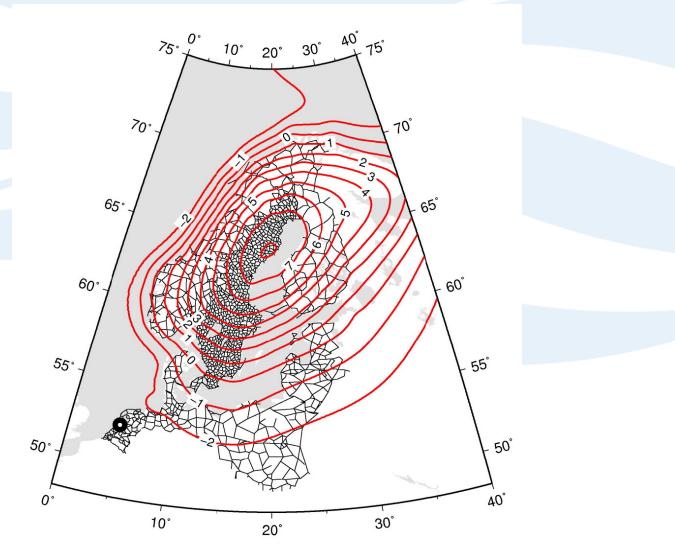
- global rise of the oceans
- local "oceanographic" effects
- unstable soil under the tide gauge
- postglacial rebound on some areas
- instrumental errors and breakdowns

What is the measurand?

- we are not measuring the sea level
- we measure the location of the level related to earth crust
- both are affected by several disturbing factors
- the result is dependent on time (epoch)

Seamless depth data

- on tidal areas it is only natural that the depth information on adjoining charts is not seamless
- but on non-tidal areas the seamless depth database in not only a possibility but could significantly benefit the exploitation of the depth data both in nautical chart production and in other applications


We should change the process

- We should measure and process the depth data by using such depth (height) datum, which is seamless for the whole area
- For charts (navigators) we should finally represent the depth information by maintaining the impression of "Mean Sea Level"
- The height system of Tide Gauges (Mareographs)
- The one and only possible choice is that the new depth datum itself is close to MSL

Geodetic reference frames

- The selection of WGS84-spheroid would solve many problems related to the hydrographic surveys. But for charts we would need the accurate physical model of the earth surface (geoid)
- A physical reference frame for heights can be created by levelling networks. Usually such levelling network is calculated by using MSL as zero level
- NOTE: In lack of uniform and accurate geodetic reference frame, the MSL is the only possibility for that area

Baltic Sea Levelling network available

1 April 2009

Where is the problem?

- IHO M-3 and M-4 do recognize only MSL without any explanations
- Many countries have adopted a geodetic reference which is approximately MSL
 - What is the allowed difference?
- In case of MSL Datum and area affected by land uplift the charted depths should be changed regularly

(ii) advise on the use of vertical datums;

(iii) advise on tidal and water level observation, analysis and prediction;

(iv) advise on matters concerning the exchange, distribution and use of tidal and water level related data;

(v) propose relevant amendments and improvements to IHO Technical Resolutions(M-3) relating to tidal, water level and vertical datums;

The Work program of TWLWG

- Should we study more
 - Recommendation for MSL-determination on non-tidal vaters
 - The allowed difference of CD and MSL
 - The possibility to even recommend to use geodetic datum
- All these may require new regulations for water level information.

(iii) advise on tidal and water level observation, analysis and prediction;

(iv) advise on matters concerning the exchange, distribution and use of tidal and water level related data;

(vii) study principles and methods for conveying tidal and water level information to mariners.

1 April 2009

Real time Water Level information

- Observed Water Level
 - Tide gauge
 - Observation time
 - Reference frame
- Interpolated Water Level
 - Between two or more tide gauges
- Predicted Water Level
 - Prediction for 2 4 days
- Continuous data flow / warnings only
- TWLWG should study the user requirements

BSHC Chart Datum WG asks

- Is it allowed to select a geodetic reference frame (or system) to the Chart Datum
 - If yes then his should be *instructed* in TR and M-4
- The opinion of TWLWG about the other issues included to BSHC TOR:s
 - Should they be noted also in the WP of TWLWG
- Are there other sea areas which have similar circumstances and practical requirements like the Baltic Sea

End of the BSHC ChartDatumWG report

Questions, comments?

Thank You!

1 April 2009